(NU3-6) Fundamental law of radioactive decay

Aim of experiment

Determination of the characteristic decay law for a short-lived radioactive source and its half life time.

Apparatus

GM tube counting station consists of GM counter – radioactive source- source holder-stop watch, source cabinet made of thick lead.

Theory of experiment

Each nucleus has a fixed probability of decaying per unit time. Nothing affects this probability (e.g., temperature, pressure, bonding environment, etc.) [Exception: very high pressure promotes electron capture slightly]

This is equivalent to saying that averaged over a large enough number of atoms the number of decays per unit time is proportional to the number of atoms present. Therefore in a closed system:

$$\frac{dN}{dt}\alpha N(t)$$

$$\frac{dN}{dt} = -\lambda N(t) = A(t)$$

where Ais the activity of the source after elapsed time, d.

and N= number of parent nuclei at time t and it is proportional to the activity A.

 $\lambda = \text{decay constant} = \text{probability of decay per}$ unit time. λ may has the units time⁻¹ (e.g. s⁻¹, d⁻¹, m⁻¹, y⁻¹)

To get time history of number of parent nuclei, integration of the above equation yields:

$$N(t) = N_0 e^{-\lambda t}$$

 N_o = initial number of parent nuclei at time t = 0.

At $t=T_{1/2}$, the half-life; the time it takes for half the nuclei to decay - i.e. for activity, A_0 , to decrease to $A_0/2$ is given by

$$T_{1/2} = \frac{Ln2}{\lambda}$$

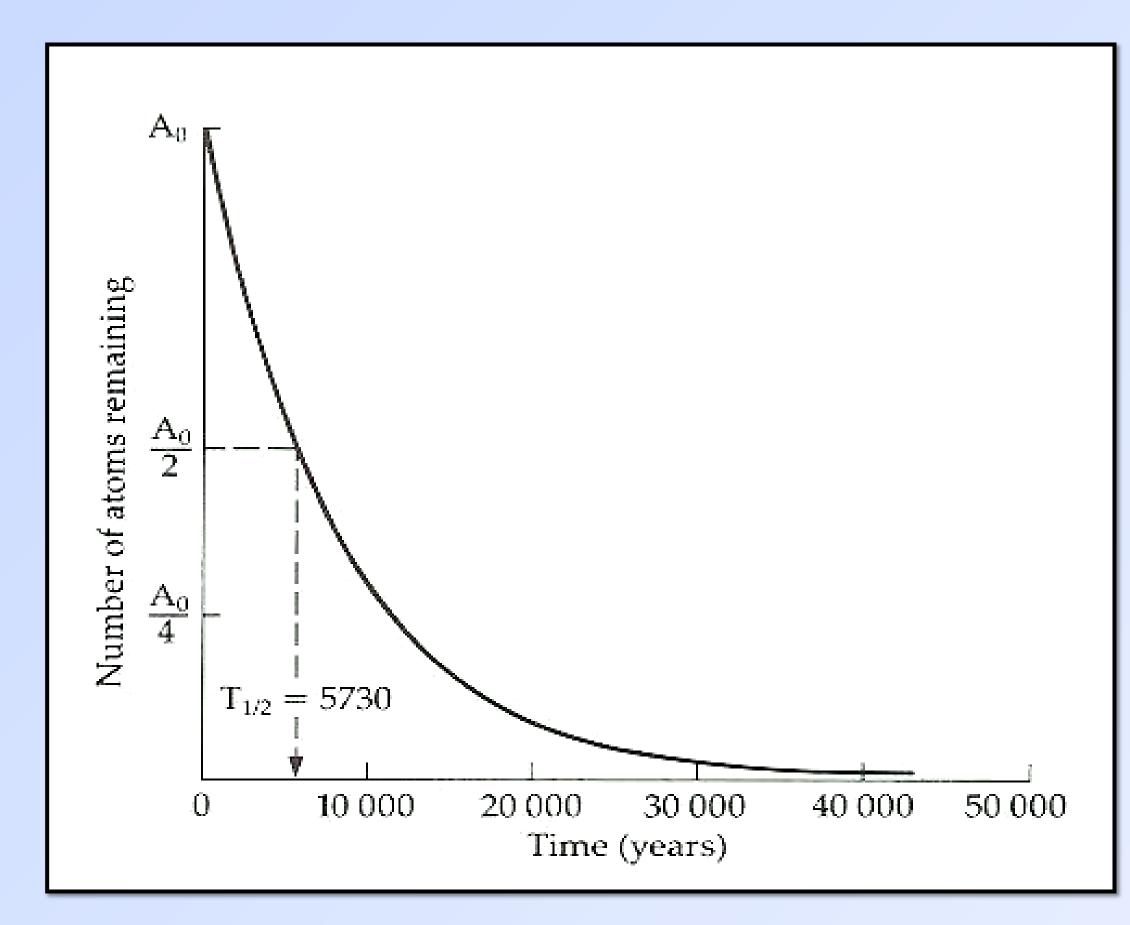


Figure 1 represents the relation between $A=\lambda N$ and time of decay.

At t=0 _{No=Ao} λ , and at $t=T_{1/2}$, $N(T_{1/2})=A_o/2\lambda$. One can obtain the half-life time and the decay constant of the decaying nucleus. If one plots the relation between Ln (N) and the time of decay, t, a straight line with negative slope is obtained, from which λ is obtained.

$$Ln(N) = Ln(N_0) - \lambda t$$

Procedure

- 1. Set up the electronics as shown in *Figure*2.
- 2. Place a radioactive source on a shelf of the GM stand at a suitable distance.
- 3. Switch on the power supply and let it warm for few minutes, then set the applied voltage at the tube operating voltage, V_{op}

- 4. Set the timer on 1 min and measure the background reading, $N_{b\varrho}$ c/min.
- 5. Start count, then start stop watch, t=0 min, and record the corresponding number of counts, *N*`*c/min*.
- 6. For successive elapsed times, suitable for the source lifetime, record number of counts per minute in a table.
- 7. Draw the relation between *Ln(N c/min)* and the elapsed time, *t*.
- 8. Draw the best line and find the slope, which equals the source disintegration constant, λ .

Results

$N_{b\varrho}=$	c/min
ug	

Time, t	N` c/min	$N=N$ - N_{bg}	$Ln(N\pm\sqrt{N})$
		c/min	

$$\lambda =$$

Figure 2. A schematic diagram of Geiger counting system

