# (NU3-11) Inverse Square Law for Gamma Rays

## Aim of experiment

Verification of inverse square law.

### Apparatus

GM tube counting station consists of GM counter  $-Cs^{137}$  radioactive  $\gamma$ -source- source holder-stop watch, source cabinet made of thick lead.

## Theory of experiment

Most radioactive sources are isotropic in nature. This means that gammas rays are given off equally in all directions. There are some sources, however, where there is a correlation of one gamma relative to the other that is not isotropic. In the case of an isotropic source, it is a well known fact that the intensity of the source falls off as  $1/R^2$ . In this experiment, this  $1/R^2$  relationship for a Cs<sup>137</sup> source will be verified.

#### Procedure

- 1. Set the voltage of the GM counter at its operating value.
- 2. Determine the background counting rate,  $N_{bg}$ .
- 3. Place the Cs<sup>137</sup> source at 1 cm from the window and count for 3min.
- 4. Move the source each 1 cm and record the resulting count rate, N, up to distance 25cm.
- 5. Record the results in a Table. Correct these results by subtracting the background.
- 6. Draw a graph between the counting rate and  $1/R^2$ . A straight line must be obtained.



#### Results

N<sub>BG</sub>= Counts/s

|        |                                      |          | T.                    |
|--------|--------------------------------------|----------|-----------------------|
| R (cm) | 1/R <sup>2</sup> (cm <sup>-2</sup> ) | N' (c/s) | N =N'-N <sub>bg</sub> |
| 1      |                                      |          |                       |
| 2      |                                      |          |                       |
| 3      |                                      |          |                       |
| 4      |                                      |          |                       |
| 5      |                                      |          |                       |
| 6      |                                      |          |                       |
| 7      |                                      |          |                       |
| 8      |                                      |          |                       |
| 9      |                                      |          |                       |
| 10     |                                      |          |                       |
| 11     |                                      |          |                       |
| 12     |                                      |          |                       |
| 13     |                                      |          |                       |
| 14     |                                      |          |                       |
| 15     |                                      |          |                       |
| 16     |                                      |          |                       |
| 17     |                                      |          |                       |
| 18     |                                      |          |                       |
| 19     |                                      |          |                       |
| 20     |                                      |          |                       |
| 21     |                                      |          |                       |
| 22     |                                      |          |                       |
| 23     |                                      |          |                       |
| 24     |                                      |          |                       |
| 25     |                                      |          |                       |

