(M1-2) Magnetic Field of a Long Wire

Aim of experiment

Determination of the magnetic field distribution as a function of radial distance of an electric current carrying long straight wire and the magnetic permeability of air.

Apparatus

One Meter Long Copper Wire –A.C Power Supply – Tesla Meter– Ammeter.

Theory of experiment

Electric currents produce magnetic fields. For a current element, *Ids*, the produced magnetic field, *dB* at a radial distance *r*, according to the *Biot-Savart law* is given by

$$dB = \mu_0 I ds/r^2$$

For a long straight wire of length L, carrying a current of I(A), the integration of Biot-Savart law produces a magnetic field B(T) at a radial distance r(m) given by

$$B = \mu_o I/2\pi r$$

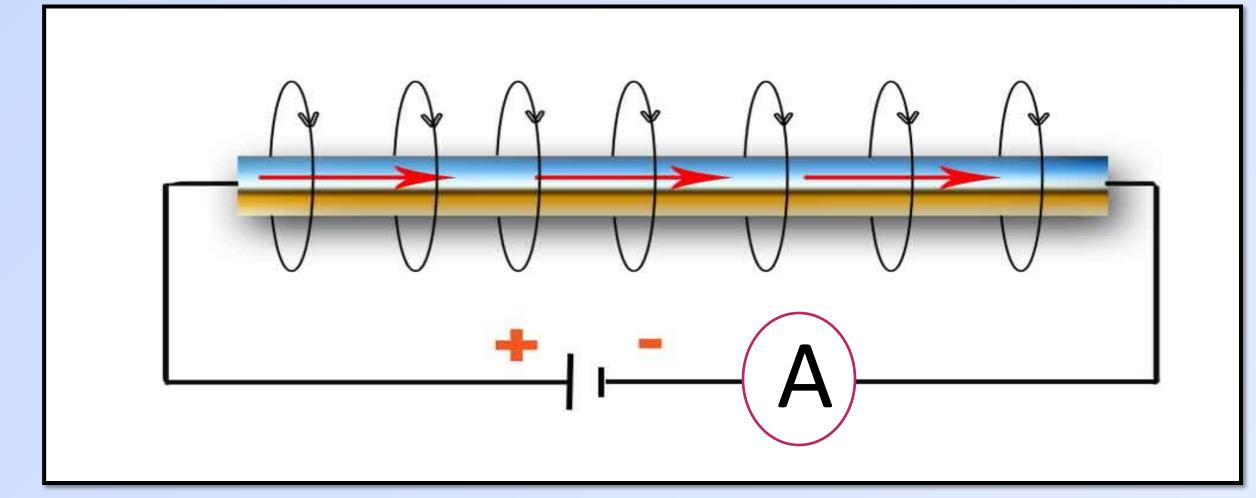
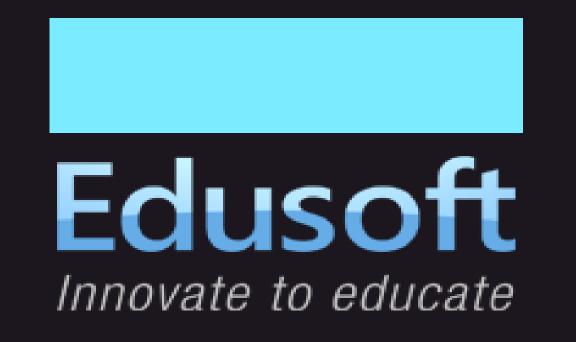


Figure 1. Magnetic field distribution of a long wire carrying current

When a magnetic probe of the tesla meter is placed near from a wire carrying current and perpendicular to its plane, one can measure B as a function of the radial distance, r. If one draws the relation between B and 1/r, a straight line of slope $\mu_o I/2\pi$ from which μ_o can be calculated.

Procedure


- 1. Arrange the circuit as shown in *figure 1*.
- 2. Pass a measured current (say 1 A) through the wire and record B at different distances r radially from the wire.
- 3. Repeat step 2 two more times at least.
- 4. Tabulate the obtained data on a table.
- 5. Draw a graph between 1/r on x-axis and B_{av} on y-axis.
- 6. Determine μ_0 .
- 7. Comment on the graph.

Results

I= A

r (m)	$1/r (m^{-1})$	$B_1(T)$	$B_2(T)$	$B_3(T)$	$B_{av}(T)$

$$\mu_o = Tm/A$$

