(PM1-2) Archimedes' Principle

Aim of experiment

Determination of the specific density of a solid and of a liquid.

Apparatus

Sensitive Balance – Regular Solid Body – Beaker Contains Water - Beaker Contains Any Other Liquid.

Theory of experiment

Archimedes principle states that *if a body is immersed in a liquid, it will be acted upon by upward upthrust force equal to the weight of the displaced liquid,*

Up thrust force = weight of the displaced liquid

= volume of displaced liquid *x* density of liquid *x* acceleration due to gravity

= volume of the body, V_b x density of liquid, ρ_L , x acceleration due to gravity, g.

$$F_{up} = w_1 - w_2 = V_b \cdot \rho_L \cdot g$$

Where, w_1 and w_2 are weights of the body in air and in liquid respectively.

Specific gravity, or density, is defined as the ratio between the weights of a given volume of a substance to the weight of an equal volume of water. It is dimensionless quantity .If this equation is applied for the same body in water; one can obtain the following equation: Specific density of a liquid

$$= (W_1 - W_3)/(W_1 - W_2)$$

Where, w_3 is the weight of the body in the liquid.

Also, the specific density of a solid can be obtained from the following equation: Specific density of a solid $= w_1/(w_1 - w_2)$

Procedures

- 1. Find the weight of the body in air, w_1
- 2. Find the weight of the body when it is completely immersed in the water, w_2
- 3. Find the weight of the body when it is completely immersed in the liquid, w_3
- 4. Repeat steps 1-3 at least three times, and calculate the average.
- 5. Calculate the volume of the body and verify Archimedes' principle.

Results

	Trial 1	Trial 2	Trial 2	$W_{av}(N)$
$W_1(N)$				
$W_2(N)$				
$W_3(N)$				

Specific density of a liquid = $(w_1 - w_3)/(w_1 - w_2)$ = Specific density of a solid = $w_1/(w_1 - w_2)$ =

