(HT1-1) Specific Heat of Solids

Aim of experiment

Determination of the specific heat of a metal block

Apparatus

Large Mass of Metal A, Beaker B, Copper Calorimeter C in Insulating Jacket D, Water- Copper Stirrer E, Thermometer.

Theory of experiment

Materials differ from one another in the quantity of heat required to produce a given elevation of temperature in a given mass. The quantity of heat added to a given mass of a substance in order to increase its temperature is given by

$$Q = m C\Delta T$$

Where, C is a constant which depends on the material type and is called specific heat. It is defined as the amount of energy required to increase the temperature of 1Kg of a substance by one degree.

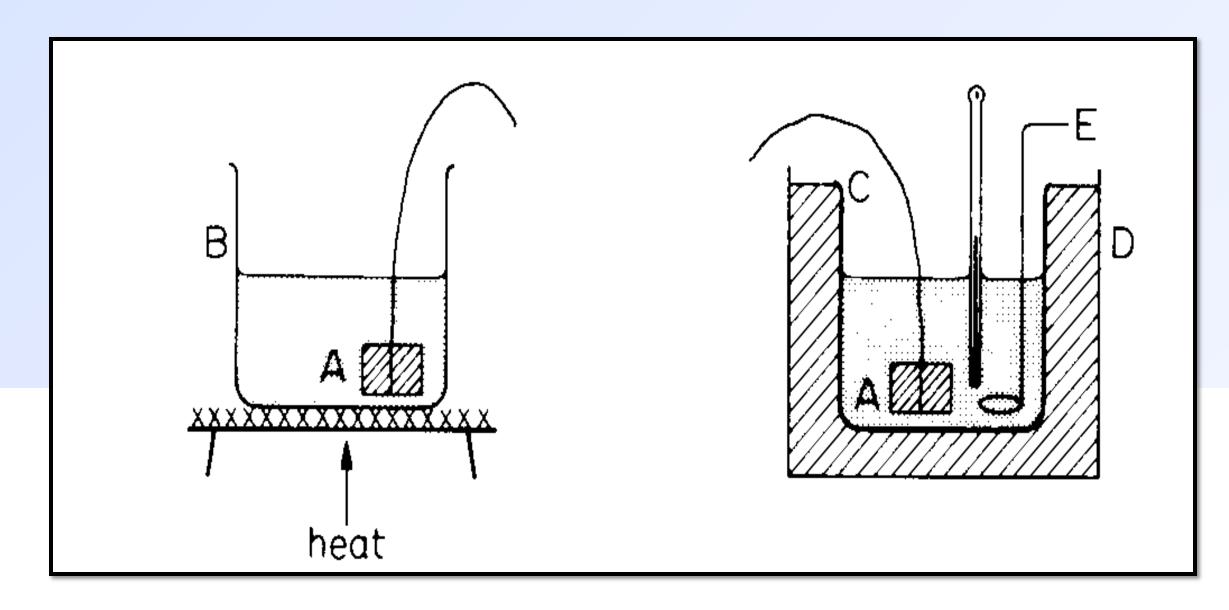


Figure 1. A schematic diagram for specific heat capacity measurement

Now consider a hot metal block with mass m_s and temperature T_s is placed in a calorimeter, *figure 1*, with mass m_c which contains water with mass m_w both of them at temperature T_i .

According to the conservation law of energy:

Heat lost by metal = Heat gained by water and calorimeter

$$m_{S} C_{S} (T_{S}-T_{f}) = (m_{W} C_{W} + m_{C} C_{C})(T_{f}-T_{i})$$

Where, C_s is the specific heat capacity of the metal block, C_w (=4200 J kg^{-1} K^{-1}) is the specific heat capacity of water, C_c is the specific heat capacity of calorimeter, and T_f is the temperature of the mixture.

Procedures

- 1. Fill the beaker B with some water and place the metal A inside it, and boil the water.
- 2. Meanwhile, weigh the calorimeter, fill it about one-half with water, and reweigh.
- 3. Record the initial temperature of water and the calorimeter, T_i .
- 4. Record the temperature of the boiling water and the block, T_s .
- 5. Quickly transfer block A to the water in the calorimeter C.

- 6. Observe the water temperature until it reaches a maximum and then let to drop several degrees below the maximum reached. Record the maximum temperature T_f
- 7. Repeat steps 3 to 6 two more tes and measure T_i , T_f , and T_s in each case.
- 8. Calculate the average specific heat of the metal block.

Results

Mass of calorimeter $m_c =kg$ Mass of water $m_w =kg$ Mass of metal block $m_s =kg$ Specific Heat of calorimeter $C_c =kg^{-1} K^{-1}$ Specific Heat of water $C_w =Jkg^{-1} K^{-1}$

Trial	T_{s} (°C)	T_i (°C)	$T_f(^{o}C)$	$C_s(J.kg^{-1}.K^{-1})$
1				
2				
3				
			$C_{sav}=$	

